3.144 \(\int \frac{1}{x (d+e x) (d^2-e^2 x^2)^{5/2}} \, dx\)

Optimal. Leaf size=119 \[ \frac{15 d-8 e x}{15 d^6 \sqrt{d^2-e^2 x^2}}+\frac{5 d-4 e x}{15 d^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac{1}{5 d^2 (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{d}\right )}{d^6} \]

[Out]

(5*d - 4*e*x)/(15*d^4*(d^2 - e^2*x^2)^(3/2)) + 1/(5*d^2*(d + e*x)*(d^2 - e^2*x^2)^(3/2)) + (15*d - 8*e*x)/(15*
d^6*Sqrt[d^2 - e^2*x^2]) - ArcTanh[Sqrt[d^2 - e^2*x^2]/d]/d^6

________________________________________________________________________________________

Rubi [A]  time = 0.10675, antiderivative size = 119, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {857, 823, 12, 266, 63, 208} \[ \frac{15 d-8 e x}{15 d^6 \sqrt{d^2-e^2 x^2}}+\frac{5 d-4 e x}{15 d^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac{1}{5 d^2 (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{d}\right )}{d^6} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(d + e*x)*(d^2 - e^2*x^2)^(5/2)),x]

[Out]

(5*d - 4*e*x)/(15*d^4*(d^2 - e^2*x^2)^(3/2)) + 1/(5*d^2*(d + e*x)*(d^2 - e^2*x^2)^(3/2)) + (15*d - 8*e*x)/(15*
d^6*Sqrt[d^2 - e^2*x^2]) - ArcTanh[Sqrt[d^2 - e^2*x^2]/d]/d^6

Rule 857

Int[(((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(d*(f + g*x)
^(n + 1)*(a + c*x^2)^(p + 1))/(2*a*p*(e*f - d*g)*(d + e*x)), x] + Dist[1/(p*(2*c*d)*(e*f - d*g)), Int[(f + g*x
)^n*(a + c*x^2)^p*(c*e*f*(2*p + 1) - c*d*g*(n + 2*p + 1) + c*e*g*(n + 2*p + 2)*x), x], x] /; FreeQ[{a, c, d, e
, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[n, 0] && ILtQ[n + 2*p, 0] &
&  !IGtQ[n, 0]

Rule 823

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(
m + 1)*(f*a*c*e - a*g*c*d + c*(c*d*f + a*e*g)*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), x] + Di
st[1/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Simp[f*(c^2*d^2*(2*p + 3) + a*c*e^2*
(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f + a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x (d+e x) \left (d^2-e^2 x^2\right )^{5/2}} \, dx &=\frac{1}{5 d^2 (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}-\frac{\int \frac{-5 d e^2+4 e^3 x}{x \left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d^2 e^2}\\ &=\frac{5 d-4 e x}{15 d^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac{1}{5 d^2 (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}-\frac{\int \frac{-15 d^3 e^4+8 d^2 e^5 x}{x \left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 d^6 e^4}\\ &=\frac{5 d-4 e x}{15 d^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac{1}{5 d^2 (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}+\frac{15 d-8 e x}{15 d^6 \sqrt{d^2-e^2 x^2}}-\frac{\int -\frac{15 d^5 e^6}{x \sqrt{d^2-e^2 x^2}} \, dx}{15 d^{10} e^6}\\ &=\frac{5 d-4 e x}{15 d^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac{1}{5 d^2 (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}+\frac{15 d-8 e x}{15 d^6 \sqrt{d^2-e^2 x^2}}+\frac{\int \frac{1}{x \sqrt{d^2-e^2 x^2}} \, dx}{d^5}\\ &=\frac{5 d-4 e x}{15 d^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac{1}{5 d^2 (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}+\frac{15 d-8 e x}{15 d^6 \sqrt{d^2-e^2 x^2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{d^2-e^2 x}} \, dx,x,x^2\right )}{2 d^5}\\ &=\frac{5 d-4 e x}{15 d^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac{1}{5 d^2 (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}+\frac{15 d-8 e x}{15 d^6 \sqrt{d^2-e^2 x^2}}-\frac{\operatorname{Subst}\left (\int \frac{1}{\frac{d^2}{e^2}-\frac{x^2}{e^2}} \, dx,x,\sqrt{d^2-e^2 x^2}\right )}{d^5 e^2}\\ &=\frac{5 d-4 e x}{15 d^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac{1}{5 d^2 (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}+\frac{15 d-8 e x}{15 d^6 \sqrt{d^2-e^2 x^2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{d}\right )}{d^6}\\ \end{align*}

Mathematica [A]  time = 0.095976, size = 106, normalized size = 0.89 \[ \frac{\frac{\sqrt{d^2-e^2 x^2} \left (-27 d^2 e^2 x^2+8 d^3 e x+23 d^4-7 d e^3 x^3+8 e^4 x^4\right )}{(d-e x)^2 (d+e x)^3}-15 \log \left (\sqrt{d^2-e^2 x^2}+d\right )+15 \log (x)}{15 d^6} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(d + e*x)*(d^2 - e^2*x^2)^(5/2)),x]

[Out]

((Sqrt[d^2 - e^2*x^2]*(23*d^4 + 8*d^3*e*x - 27*d^2*e^2*x^2 - 7*d*e^3*x^3 + 8*e^4*x^4))/((d - e*x)^2*(d + e*x)^
3) + 15*Log[x] - 15*Log[d + Sqrt[d^2 - e^2*x^2]])/(15*d^6)

________________________________________________________________________________________

Maple [A]  time = 0.059, size = 196, normalized size = 1.7 \begin{align*}{\frac{1}{3\,{d}^{3}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{-{\frac{3}{2}}}}+{\frac{1}{{d}^{5}}{\frac{1}{\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}}}-{\frac{1}{{d}^{5}}\ln \left ({\frac{1}{x} \left ( 2\,{d}^{2}+2\,\sqrt{{d}^{2}}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}} \right ) } \right ){\frac{1}{\sqrt{{d}^{2}}}}}+{\frac{1}{5\,e{d}^{2}} \left ({\frac{d}{e}}+x \right ) ^{-1} \left ( - \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) \right ) ^{-{\frac{3}{2}}}}-{\frac{4\,ex}{15\,{d}^{4}} \left ( - \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) \right ) ^{-{\frac{3}{2}}}}-{\frac{8\,ex}{15\,{d}^{6}}{\frac{1}{\sqrt{- \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(e*x+d)/(-e^2*x^2+d^2)^(5/2),x)

[Out]

1/3/d^3/(-e^2*x^2+d^2)^(3/2)+1/d^5/(-e^2*x^2+d^2)^(1/2)-1/d^5/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^
2)^(1/2))/x)+1/5/d^2/e/(d/e+x)/(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^(3/2)-4/15/d^4*e/(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^
(3/2)*x-8/15/d^6*e/(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^(1/2)*x

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}}{\left (e x + d\right )} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)/(-e^2*x^2+d^2)^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((-e^2*x^2 + d^2)^(5/2)*(e*x + d)*x), x)

________________________________________________________________________________________

Fricas [B]  time = 1.70179, size = 493, normalized size = 4.14 \begin{align*} \frac{23 \, e^{5} x^{5} + 23 \, d e^{4} x^{4} - 46 \, d^{2} e^{3} x^{3} - 46 \, d^{3} e^{2} x^{2} + 23 \, d^{4} e x + 23 \, d^{5} + 15 \,{\left (e^{5} x^{5} + d e^{4} x^{4} - 2 \, d^{2} e^{3} x^{3} - 2 \, d^{3} e^{2} x^{2} + d^{4} e x + d^{5}\right )} \log \left (-\frac{d - \sqrt{-e^{2} x^{2} + d^{2}}}{x}\right ) +{\left (8 \, e^{4} x^{4} - 7 \, d e^{3} x^{3} - 27 \, d^{2} e^{2} x^{2} + 8 \, d^{3} e x + 23 \, d^{4}\right )} \sqrt{-e^{2} x^{2} + d^{2}}}{15 \,{\left (d^{6} e^{5} x^{5} + d^{7} e^{4} x^{4} - 2 \, d^{8} e^{3} x^{3} - 2 \, d^{9} e^{2} x^{2} + d^{10} e x + d^{11}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)/(-e^2*x^2+d^2)^(5/2),x, algorithm="fricas")

[Out]

1/15*(23*e^5*x^5 + 23*d*e^4*x^4 - 46*d^2*e^3*x^3 - 46*d^3*e^2*x^2 + 23*d^4*e*x + 23*d^5 + 15*(e^5*x^5 + d*e^4*
x^4 - 2*d^2*e^3*x^3 - 2*d^3*e^2*x^2 + d^4*e*x + d^5)*log(-(d - sqrt(-e^2*x^2 + d^2))/x) + (8*e^4*x^4 - 7*d*e^3
*x^3 - 27*d^2*e^2*x^2 + 8*d^3*e*x + 23*d^4)*sqrt(-e^2*x^2 + d^2))/(d^6*e^5*x^5 + d^7*e^4*x^4 - 2*d^8*e^3*x^3 -
 2*d^9*e^2*x^2 + d^10*e*x + d^11)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac{5}{2}} \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)/(-e**2*x**2+d**2)**(5/2),x)

[Out]

Integral(1/(x*(-(-d + e*x)*(d + e*x))**(5/2)*(d + e*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \left [\mathit{undef}, \mathit{undef}, \mathit{undef}, \mathit{undef}, \mathit{undef}, 1\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)/(-e^2*x^2+d^2)^(5/2),x, algorithm="giac")

[Out]

[undef, undef, undef, undef, undef, 1]